Apabilafaktor dilatasi terletak diantara -1 hingga 0 (-1 < k < 0), maka bangun bayangan akan diperkecil dan terletak berlainan pihak terhadap pusat dilatasi dan bangun asal. Diketahui sebuang bangun segitiga dengan titik sudut pada koordinat sebagai berikut: A(2,3), B(7,1) dan C(-2,-5). Bangun tersebut kemudian di-dilatasi dengan faktor
MENENTUKAN KOORDINAT SUATU TITIK PADA RUAS GARIS September 19th, 2016 Barangkali adik-adik di SMA atau SMP pernah mendapatkan soal matematika seperti ini. Diketahui dua buah titik A-1,4 dan B6,1. Titik P terletak pada ruas garis [pmath]overline{AB}[/pmath] sedemikian hingga [pmath]delim{}{overline{AP}}{}~~delim{}{overline{PB}}{}~=~2~~3[/pmath]. Tentukanlah koordinat P. Inilah yang akan dibahas pada post kali ini. Mari kita turunkan dulu rumusnya … Misalkan A dan B adalah dua titik yang koordinatnya diketahui dan P adalah suatu titik pada ruas garis [pmath]overline{AB}[/pmath] sedemikian hingga [pmath]delim{}{overline{AP}}{}~~delim{}{overline{PB}}{}~=~m~~n[/pmath]. Lihat Gambar 1. Gambar 1 Pada Gambar 1, A dan B adalah titik-titik yang koordinatnya diketahui. [pmath]vec{A},~ vec{B},~ vec{P}[/pmath] masing-masing adalah, secara berturutan, vektor posisi A, B, dan P, dengan titik pangkal koordinat O. Karena koordinat A dan B diketahui, vektor posisi A dan B dapat ditentukan. Sekarang kita akan mencari vektor posisi P sehingga koordinat P dapat ditentukan. Perhatikan bahwa [pmath]vec{AP}={m}/{m+n} vec{AB}[/pmath]. Apabila dinyatakan dalam vektor posisi, kesamaan ini dapat dinyatakan sebagai [pmath]vec{P}~-~vec{A}~=~{m}/{m+n} delim{[}{vec{B}~-~vec{A}}{]}[/pmath] [pmath]vec{P}~=~{m}/{m+n} vec{B}~-~ {m}/{m+n} vec{A}~ + ~ vec{A}[/pmath] [pmath]vec{P}~=~ {m}/{m+n} vec{B} ~+~ {n}/{m+n} vec{A}[/pmath] [pmath]vec{P}~=~ {m vec{B} ~+~ n vec{A}}/{m+n}[/pmath] …………………………………………. * Dari *, koordinat P dengan mudah diperoleh. Coba kita terapkan * pada contoh soal di awal post ini. Situasi pada contoh tersebut dapat digambarkan sebagai berikut. Gambar 2 Vektor posisi dari A adalah [pmath]vec{A}~=~ delim{[}{matrix{2}{1}{{-1} 4}}{]}[/pmath] dan vektor posisi B adalah [pmath]vec{B}~=~ delim{[}{matrix{2}{1}{6 1}}{]}[/pmath]. Pada contoh ini, m = 2 dan n = 3. Substitusikan nilai-nilai ini ke dalam *, diperoleh [pmath]vec{P}~=~ {2 delim{[}{matrix{2}{1}{6 1}}{]}~+~ 3 delim{[}{matrix{2}{1}{{-1} 4}}{]}}/{2+3}[/pmath] [pmath]vec{P}~=~{1}/{5} delim{[}{matrix{2}{1}{9 14}}{]}[/pmath] [pmath]vec{P}~=~ delim{[}{matrix{2}{1}{{1{4/5}} {2{4/5}}}}{]}[/pmath] Dengan demikian diperoleh koordinat [pmath]P1{4/5},2{4/5}[/pmath]. PERLUASAN Sekarang bagaimana apabila titik P yang dimaksud di atas bukan terletak pada ruas garis penghubung A dan B, melainkan P ini terletak pada perpanjangan ruas garis tersebut searah [pmath]vec{BA}[/pmath]? Perhatikan contoh berikut. Diketahui dua buah titik A-1,4 dan B6,1. Titik P terletak pada perpanjangan ruas garis [pmath]overline{BA}[/pmath] searah [pmath]vec{BA}[/pmath] sedemikian hingga [pmath]delim{}{overline{AP}}{}~~delim{}{overline{BP}}{}~=~1~~5[/pmath]. Tentukanlah koordinat P. Situasi pada contoh kedua ini digambarkan sebagai berikut. Gambar 3 Pada contoh kedua ini, seolah-olah A dan P berganti peran. Dalam penurunan rumus *, P berperan sebagai suatu titik pada ruas garis yang menghubungkan A dan B yang diketahui masing-masing koordinatnya. Pada contoh kali ini, A yang koordinatnya diketahui berperan sebagai salah satu titik pada ruas garis yang menghubungkan P yang tidak diketahui koordinatnya dan B yang diketahui koordinatnya. Jadi, rumus * “dimodifikasi” menjadi [pmath]vec{A}~=~ {m vec{B} ~+~ n vec{P}}/{m+n}[/pmath] …………………………………………………… ** Pada Gambar 3 dituliskan [pmath]delim{}{overline{BA}}{} ~~ delim{}{overline{AP}}{} ~=~ 4~~1[/pmath]. Ini adalah karena [pmath]delim{}{overline{BP}}{} ~~ delim{}{overline{AP}}{} ~=~ 5~~1[/pmath], sedangkan [pmath]delim{}{overline{BA}}{} ~=~ delim{}{overline{BP}}{} ~-~ delim{}{overline{AP}}{} ~=~ 5 ~-~ 1 ~=~4[/pmath]. Jadi, pada contoh ini, m = 1 dan n = 4. Substitusikan semua nilai yang diketahui ke dalam **, diperoleh [pmath]vec{A}~=~ {vec{B} ~+~ 4 vec{P}}/5[/pmath] [pmath]vec{P}~=~ {5 vec{A} ~-~ vec{B}}/4[/pmath] [pmath]vec{P} ~=~ {5 delim{[}{matrix{2}{1}{{-1} 4}}{]} ~-~ delim{[}{matrix{2}{1}{6 1}}{]}}/4 ~=~ delim{[}{matrix{2}{1}{{-2{3/4}} {4{3/4}}}}{]}[/pmath] Jadi, diperolehlah jawaban yang diminta, yaitu [pmath]P-2{3/4},4{3/4}[/pmath]. Most visitors also read Satu tanggapan untuk “MENENTUKAN KOORDINAT SUATU TITIK PADA RUAS GARIS” Sangat Membantu Terimakasih Tinggalkan Balasan
KoordinatTitik yang Terletak pada Suatu Segmen Garis. Andaikan ditentukan dua titik P(x1, y1, z1) dan Q(x2, y2, z2) dan jika R(xR, yR, zR) terletak pada segmen garis PQ sehingga PR : Nilai x positif terletak di sisi kanan titik (0, 0) dan nilai x negatif terletak di sisi kiri titik (0, 0). Hubungkan titik di bidang koordinat. Untuk membuat grafik parabola, hubungkan titik-titik yang diperoleh dalam langkah sebelumnya. Grafik dari persamaan contoh akan berbentuk seperti huruf U. Pastikan untuk menghubungkan titik-titik Jikairisan dengan bidang koordinat lain berupa elips, maka disebut paraboloida eliptik. Jika irisan dengan bidang sejajar koordinat yang lain berupa hiperbola, maka disebut paraboloida hiperbolik. Karena memenuhi aturan a, b, dan c, maka titik (0, yo, 𝜆 ) terletak pada ellips , sehingga memenuhi 𝑦0 2 = 2𝑝𝜆 . Karena aturan a, b
Mathteacher di Sekolah Menengah Atas (2004–saat ini) Penulis punya 116 jawaban dan 63,4 rb tayangan jawaban 3 thn. Kuadran koordinat Cartesius ada 4. Pada kuadran I nilai x positif y positif, pada kuadran II nilai x negatif y positif, pada kuadran III nilai x negatif y negatif, dan pada kuadran IV nilai x positif y negatif. Ringkasnya:
Koordinattitik A(11,3,-2) dan titik B(6,8,3)*jika vec(AB Soal Titik P terletak pada garis AB. Jawaban paling sesuai dengan pertanyaan Titik P terletak pada garis AB.
Menggambartitik-titik detail dengan skala menggunakan busur dan penggaris. Menentukan bangunan-bangunan yang ada di lapangan. Garis kontur lereng yang curam akan terlihat
jsA0aH.
  • lz2x838w3j.pages.dev/1
  • lz2x838w3j.pages.dev/21
  • lz2x838w3j.pages.dev/345
  • lz2x838w3j.pages.dev/22
  • lz2x838w3j.pages.dev/296
  • lz2x838w3j.pages.dev/328
  • lz2x838w3j.pages.dev/159
  • lz2x838w3j.pages.dev/170
  • lz2x838w3j.pages.dev/216
  • titik a terletak pada koordinat